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The classification of flow regimes near small two-dimensional roughness elements on the 
surface of a body in supersonic viscous flow is given in [i] as the Reynolds number based 
on the free stream velocity and the characteristic length of the body tends to infinity. 
The principal similarity parameters that determine the flow characteristics, the type of equa- 
tions, and the boundary conditions have been established using the well-known method of mat- 
ched asymptotic expansions. In particular, it has been determined that the roughness with a 

< s i s  characteristic range s3/2 < b/1 E and a characteristic transverse dimension a/1 
O[e(b/1)~/~], where e = Re-I/2, remain within a subsonic wall layer of the undisturbed boun- 
dary layer and the flow near such roughnesses in the first approximation as s § 0 is described 
by Prandtl's incompressible boundary layer equations. The pressure distribution in this case 
is determined from the condition for the interaction of the roughness with the near wall layer 
of the undisturbed boundary layer, i.e., for the given flow conditions there is no interaction 
with the external flow in the first approximation and the change in roughness height is com- 
pensated by a change in the displacement thickness of the near wall layer of the undisturbed 
boundary layer. Hence the flow under study is referred to as "compensating" flow. The for- 
mulation of the boundary-value problem for the "compensated" flow over roughness is also 
described in [2] and the solution in the wake of a finite roughness on a body has been ob- 
tained. A complete solution to the nonlinear boundary-value problem is obtained in [3]. The 
classification of flow conditions near small roughness is given in [4] and the solutions for 
different flow conditions around the roughness as the local similarity parameters approach 
their limiting values are given in [5]. The similarity solutions to the "compensating" flow 
past roughnesses on the surface of a body are investigated in this paper. 

I. "Compensating" flow past small roughnesses is described by the following boundary- 
value problems (see, e.g., [3]): 

n ~ ' "  = p" + ~"~' - -  r  H H " / P r  = - - r  + H ' ~ ' ,  ( ~. ! ) 

H=~b~/Ap~a~, ~ = ~ ' = H = O  ( y = f ( x ) ) ,  

~ "  -> 1, g --+ V-2-~, p(x) -+ r -- y~/2(y -+ oo), /(x) .-+ O, p(x)-~O, 

->- y2/2, H :->- y(x ->- --oo), 

where x, y are the usual Cartesian coordinates; ( )" and ( )' refer to differentiation with 
respect to the longitudinal and the transverse coordinates; ~(x, y), H(x, y), and p(x) are 
the stream function, enthalpy fluctuation with respect to its value at the surface, and the 
pressure, respectively; Pr and f(x) are Prandtl's number and the normalized form of the 
roughness; ~w, Pw, and A are the values of the dynamic viscosity coefficient, density, and 
the shear stress at the surface of the body in the undisturbed boundary layer at the point 
where the small roughness is located; al and bl are the transverse and lo~gitudinal dimen- 
sions of the roughness. In the chosen system of variables, the shear stress T and the heat 
flux q in the undisturbed boundary layer at the body surface are equal to one. 

New variables are introduced 

y = c(x)N + ](x), p(x) -~ d(x) - -  ]~(x)/2, 

~(x ,  y) = d(x)~(x,  N )  -[- c2(x)N~/2 ~, c(x)/(x)N, 
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H(x ,  y) = d(x)g(x, N)/c(x)  + c(x)N~ 

in which the boundary-value problem (1.1) takes the following convenient form for analysis 

[ c/ ( 1 . 2 )  
I I ~ "  --  c'~d'd [c (c / ) 'N  + c~c"V + cd'~p] ~p" + [ c~/" + "-d- (~d" - -  

- - c ' d ) + - 7 -  ~' q - ( c d ' - c ' d )  q)' ep' cad" , f d - -  l + ~ - q ~  , - -  - 7 -  <P + c 8 ~"  N v_ _.7 + .7 .  cp,, r d ,, 

H g,, _ .e4J~N C3d" P-"7 -7 -  ~p + c2c'NqY - -  ca qD" - -  [c (c/)" N + c~c'N 2 + cd'cp + 

_ d ( N  I dcp , ) ,  

(p(x, 0 ) =  O, ~'(x, O ) = - - c / / d ,  (p,"(x, o o ) =  O, , ( x ,  o , , ) =  t ,  

g(z,  o) = o, g'(x, c o ) =  o , / ( z ) - - , ,  o, d ( x ) - +  0 ( x - , . - - ~ ) .  

I t  i s  n e c e s s a r y  t o  m e n t i o n  t h a t  i n  t h e  b o u n d a r y - v a l u e  p r o b l e m  ( 1 . 2 )  t h e  i n t e r a c t i o n  c o n d i t i o n  
~ ( x ,  co) = 1 does  n o t  i n c r e a s e  t h e  o r d e r  o f  t h e  d e r i v a t i v e s  w i t h  r e s p e c t  t o  t h e  l o n g i t u d i n a l  
c o o r d i n a t e  x p r e s e n t  i n  t h e  b o u n d a r y - v a l u e  p r o b l e m  ( 1 . 2 ) ,  t h e  e q u a t i o n s  r e m a i n  p a r a b o l i c ,  and  
t h e  u p s t r e a m  p r o p a g a t i o n  o f  d i s t u r b a n c e s  i s  n o t  c o n s i d e r e d  i n  t h e i r  s o l u t i o n .  

S i n c e  t h e  r o u g h n e s s  i n t e r a c t s  o n l y  w i t h  t h e  s u b s o n i c  p a r t  o f  t h e  u n d i s t u r b e d  b o u n d a r y  
l a y e r ,  t h e  p r e s s u r e  f l u c t u a t i o n  i s  p o s i t i v e  when t h e  f l o w  i s  p a s t  a d e p r e s s i o n  on t h e  s u r f a c e  
( f ( x )  < 0 ) :  kp > 0 and  d ( x )  > f a ( x ) / 2  > 0.  I f ,  h o w e v e r ,  t h e  r o u g h n e s s  • a p r o t u b e r a n c e  
( f ( x )  > 0 ) ,  t h e n  kp < 0 and d ( x )  < 0 .  I n  w h a t  f o l l o w s  t h e  u p p e r  s i g n  w i l l  a l w a y s  r e f e r  t o  
t h e  c a s e  o f  t h e  f l o w  p a s t  a p r o t u b e r a n c e  and  t h e  l o w e r  s i g n  w i l l  r e f e r  t o  t h e  c a s e  o f  d e p r e s -  
s i o n .  

The following arbitrary normalized function c(x) > 0 is considered: 

e(x)  = D [-T-d(x)]~. 

O b v i o u s l y ,  o n l y  when f ( x )  = =~[-T-d(x)] ~-v do t h e  b o u n d a r y  e o n d • 1 7 7  o f  t h e  g i v e n  p r o b l e m  ( 1 . 2 )  
take the similarity form 

q~.(0) ----- 0, q0'(0) =: D, q0"(oo) = 0, q~(oo) ---- t ,  ( 1 . 3 )  

g(0) = 0, g ' ( ~ )  = 0. 

For the existence of a nontrivial self-similar solution of the boundary-value problem (1.2), 
it is necessary to satisfy the condition 

c~(x )d . ( x ) /d ( x )  _ ~. ( I.  4) 

Integration of the differential equation (1.4) gives (the constant of integration can be made 
zero by shifting the origin) 

d(x) : :  --7- (3~Tx/Da)l/av, /(x) = • (3 ~?~Da)l/~v-1/8 ( l . 5)  

c(x) = (3~?x)1/~.  

Now it is possible to obtain an estimate for the variation in the fluctuations of the shear 
stress or the heat flux at the roughness surface with respect to their values in the undis- 
turbed boundary layer on the surface of the body 

(~ - -  l )  ~ (q - -  t)  ,-, d(x)/c2(x) N zl/a~-=/a. ( 1 . 6 )  

It is seen from the relation (1.5) that the product ~yx should be >0, i.e., for different 
combinations of the signs of the quantities B, y, and the coordinate x different similar 
solutions of the boundary-value problem (1.2) can be obtained. 

2. Let initially, x, B, Y > 0, i.e., the downstream propagation of disturbances is 
being analyzed, and the pressure disturbance in this case increases in absolute value 
[d(x) I " > 0. Such flows are conditionally called flows with compression. 

An estimate of the order of magnitude of the terms in the equations of the boundary- 
value problem (].2) in powers of x shows that with the use of the relations (1.5) and y = 
I/2 the Eqs. (1.2) reduce to nonlinear self-similar equations for all x > 0: 
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( ) '( ' u , N~' Zr ~"~ c~, g, + +----K' ~-~ g 
s  -r -g- J - N ~  , 

w h o s e  s o l u t i o n  s h o u l d  s a t i s f y  t h e  b o u n d a r y  c o n d i t i o n  ( 1 . 3 ) .  I n  t e r m s  o f  t h e  new v a r i a b l e s  

5" = ( n / l ~ p ~ n ,  g ( N )  = (t~/n)~/,c(n) 

Eq. (2.1) and the boundary conditions (I .3) take the following convenient form for numerical 
integration: (, ,)< ,) 

qr =I-- 4 - T 0 - t - T q =  ~ -}- -t- - ~ - n T ~ ' ~  q~'--q~, ( 2 . 2 )  

e - ~ = - y - - ~ + - ~ - - -  _ T + W ~  = : f = _ T - v n q =  ~ G, 

q~(o) = o, q / (o )  = E, ,p, ,(oo) = o, ,:p(oo) = ~, ~ (o )  = o ,  

a,(oo) = 0,. E = D(n/fi)'/~. 

Numerical integration of the boundary-value problem (2.2) makes it possible to determine 
the value of the parameter E, find the roughness shape f(x) = +(3~x/2E3) I/3, distribution of 
pressure fluctuations d(x) ==~f2(x), magnitude of the shear stress disturbance z--I = -T 
rp'(O)/E 2, and the heat flux q ~ 1 = ~G 7~(0)/E 2: 

-r - -  I = 0,7350,  q .  t = 0,1972 (f(z) = 0.6775(IIz)~/~), 

x -  t = - -0 .7182 ,  q - -  t = - -0 ,2569  (f(z) = - - 0 . 9 5 0 3 ( I I x W  3) 

for all x > 0. Profiles of the functions ~(n), ~p'(n), and--G(n) for f(x) > 0 are shown in 
Fig. 1 (curves I-3), with Pr = 0.71 in all the computations. If, however, y=/= I/2, then the 
boundary-value problem (1.2) will have similarity form only when xl/3Y -=/3 << I, i.e., when 
x >> 1 for y > I/2 and when x << I for y < I/2: 

( 2 . 3 )  
r = t - -  ~n~q/"  -4- nr - -  % 

6 " / P r  = (1 - -  ?)En - -  q~ + ~nr - -  3ln2G ' + ( t  - -  jnG, ,  

,r(o) == o,  ,V(o) = E,  ,V'(oo) = o, ,r(oo) = t ,  G(O) = o, 
G'(oo) = o. 

The numerical solution of the boundary-value problem (2.3) has been obtained for a wide range 
of y > 0. Figure 2 shows the dependence of E, -q0"(0) , and --G' (0) on y (curves I-3) ; the de- 
pendence of f(x), d(x), (T -- I), and (q -- I) in this case will be determined by the equations 

I(x) = ~ (3II'~x/ E3) 11~v-I!8, d( x) = :T:(3II?xl E~)I/s% 

- -  i = = F  [~p" (0)lEVI (31I? x/E3)I/~v-~/L q- I = ~= [G' (O)IE~l(311yx/E~)I/sv-~13. 

It is important to observe from these that for x >>I the pressure disturbances amplify 1 < 
]d(x) l < x 2/3 for the flow past the roughness (x -1/3 < If(x) I < x~/3), and the fluctuations 

s ;;:es: ~o u _2s <lIT 11 <i 1. In particular, for the flow 
of the h2t[b ; heat lfl x)dec[~aSend J ) ~ x-~/3, i.e., the fluetua- 
past a p ( ) = _ ) ( ) ( -- ) (q -- 
tions of shear stress and heat flux decrease very weakly with increase in x. 

3. Let x > 0, but 6, Y < 0, i.e., pressure fluctuations decrease downstream in absolute 
value [d(x) I" < 0. Such flows are conditionally called flows with rarefaction. In this case 
also the relations (1.5) and (1.6) are true, if the signs of 6 and y in them are replaced by 
their opposite: 

i 

0 f 2 n 

Fig. I. 

0 7 .~ Y 

Fig. 2. 
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F i g .  3.  

d(x) = T ( 3 ~ ? x / D a ) - I / 3  v, /(x) = +_(3~?x/Da)-x/31~'-V a, 

c ( @  = ( 3 ~ v x ) V 3 ,  (~ - 1) , v  (q - 1) , - ,  z - v ~ - u 3  

and further assume ~, y > 0. It is possible to observe that in this case the original 

boundary-value problem (1.2) takes the similarity form only when x>> I: 

T ' "  : - - I  - -  ?n:T ' '  - -  nT' ~- ~, ( 3 . 1 )  

G " / P r  = - - ( l  + y ) E n  + 9 + ?r ig '  - -  ? n~G' - -  (l + ?)riG, 

9(0 )  = o,  9 ' (o )  = E ,  ~ " ( ~ )  = O, 9 (00 )  = ~, C(O) = O, 

c ' ( ~ )  = o.  

The numerical solution of the boundary-value problem (3.1) has been obtained for a wide 
range of y > 0, the dependence of E, --9"(0), and -G'(0) on y are shown in Fig. 3 (curves ]- 
3). The dependence of f(x), d(x), (T -- I), and (q -- I) in this case will be determined by 

the equations 

/ ( x )  = +_(3H?x /ES)  -~ /3~ -Va ,  d(x)  = - - T ( 3 H ? x / E a ) - V n v ,  

�9 - -  I = T [9"(O)IE~](3HyxlE3)-~I3v -2/3, q -  t = ~ [G'(O)IE~](3~?~Ea)-~I3~-~/3, 

from which it is seen that for the flows with rarefaction all disturbances damp out with in- 
crease in the longitudinal coordinate x for y > 0. Results of computations show that for u = 

|T"(0) = G'(0) = 0 and, that means, 

d(x)  ,--, x -1/3,  �9 = q = t i f (x)  , - ,  x-213).  

Besides, it happens that when y = I/2, E = 0. It follows that the solution of the boundary- 
value problem (3.1) has a meaning only when y~ I/2 when E~0, since E = 0 corresponds to 
the limiting case, viz., the flow in the wake of a finite roughness on the surface of a body, 
i.e., for f(x) ~ 0 when x >>! (in this case it is necessary to put f(x) = f'(x) ~ 0 in a]l 
the equations and then use the relation D = | and E = (H/$)I/3). Precisely such a flow was 
examined in [2] and here the disturbances dampen with the increase in the longitudinal coor- 

dinate x in the following manner: 

d(x) ~ z-~/~,  (~ - 1) .--, (~ - -  t )  ~ , , z - ~ / ~ .  

This also means that for the flow past roughnesses f(x)~ x -~ for x>> I the damping of dis- 
turbances is already determined by the interaction of the near wall layer of the undisturbed 
boundary layer with the surface of the body f(x) ~ 0, and not with the roughness itself. 

When y = ! the solution of the boundary-value problem (3.1) for the function ~(n) can be 
obtained in an explicit form 

9"(n) 9 ~(0) t n e x p \  . . . .  ~exp d~ - - n e x p  ---3- ( 3 . 2 )  
3 

0 

However, this solution is not unique~ since 9"(0) remains undetermined. If 9"(0) ~ 0, then 

it follows from an analysis of the Eq. (3.2) that T"(n)~9"(0)/na (n--~oo). 

On the other hand, results of computations show that in the neighborhood of the point 
y = I, 9"(0) changes its sign (see Fig. 3), and hence it is possible to consider that there 
is a solution in which 9"(0) = 0 for y = I. Then the fluctuations of shear stresses damp out 
exponentially as n § ~ and the quantity E = 3-I/3F(2/3) = 0.93889 (results of computations 
give E = 0.93887). 
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Specific analytical results can be obtained with the Fourier transform in the x variable 
for the linearized boundary-value problem (1.2) for q)(x, N). After a few simple computations 
(see, e.g., [2]) the following relation between E and y is obtained: 

E = (3v)~/sr(_+~/3? -[- ~)0-4/3F-~(-+~/37 ~ 2/3), ( 3 . 3 )  

where ~ = [--3Ai'(0)] 3/4 ~0.8272; y~0; but here the sign + corresponds to the solution of 
the boundary-value problem (2.3) and the sign -- refers to the boundary-value problem (3.1). 
The values of E computed from this equation practically coincide with the results shown in 
Fig. 2, 3. In particular, for the flow with rarefaction it follows from (3.3) that E = 0 
when y = I/2. 

Let x < 0, then, it follows from (1.5) that the quantities B and y should have opposite 
Signs. Since the roughness height f(x) § 0 as x § then Id(x) l" > 0, and, consequently, 
B > 0 and y < 0. 

Here, as in Sec. 3, the original boundary-value problem (1.2) can take the similarity 
form only for --x ~I: 

(4.]) 
~"' = - - I  § ~ "  - -  n~'  § 9 ,  ~ (0) = 0, ~'(0)  = E, 

r  = 0, r  = t .  

It is necessary to observe that this boundary-value problem differs from (3.1) only by the 
sign of the term yn2~ ''. 

For the function z(n) = ~"(n) exp (--yn3/6), as n § ~, it is possible to obtain the equa- 
tion z" -- yan~z/4 = 0, whose solution is expressed in terms of the modified Bessel function 
[6]. Considering, that as n § = the function z(n) should decrease, it is possible to get 

z ( ~  ~ n~/~K~/6(?n~6). 
Then it follows from the asymptotic expression for the function K1/6(yn3/6), that ~"(n) § 

constant as n § ~. The boundary condition ~"(~) = 0 then gives the solution of the type 
~"(n) ~ 0, which does not satisfy the remaining boundary conditions of the problem (4.1), 
and, it means that the boundary-value problem (4.1) does not have a solution. This shows 
that the original boundary-value problem (1.2) does not have a similarity solution for the 
roughness extending to infinity. 
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